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ABSTRACT

Two aspects of incompressible laminar boundary layer flow on a semi-

infinite flat plate at zero incidence are discussed. Firstly, Alden's

proposed scheme of solution of the Navier-Stokes equations for this

problem in terms of an expansion in inverse powers of the local Reynolds

number is demonstrated to be invalid, inasmuch as the boundary. conditins

in the free stream cannot be satisfied to all orders. Secondly, an account

is given of the effect of a velocity slip boundary condition on the

solution of the Oseen boundary layer equations for the same problem. It

is found that an additional non-iuniformity in the solution is caused by

the introduction of slip.
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NOMENCLATUM

CZ Drag coefficient, eq. (44)

Cf Local skin friction coefficient, eq. (42)

CI1 C2 lonstants defined in eq. (18)

cn, Constants defined in eqs. (23) and (30)

,(Y) Functions defined in eq. (14)

&W Functions defined in eqs. (24), (25), (28) and (30)

n(C5 Functions defined in eq. (12)

g' (s) Functions defined in eq. (58)

hvi) Functions defined in eq. (26)

K Constant defined in eq. (32) ( -= K23)

KV Knudsen number

SKv Constants of integration (Appendix II)

O(x -') Symbolizes terms of order - N , i.e., -- xN ')

= constant

p Pressure

Ro L , Reynolds number based on L

Rex - , Reynolds number based on "x

S/ , molecular speed ratio

U, X and . velocity components

I (X, ) Functions defined in eq. (46)

kw Free stream velocity

,X) Cartesian coordinates

OL, Constants defined in eq. (29)

( Constant defined in eq. (21)

r Gamma function
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NOMEWE LATURE (continued)

Slip parameter, see eq. (36)

= r , auxiliary variable

9 -.

/4 Viscosity

0 u /e , kinematic viscosity

V.0 Free stream kinematic viscosity

5 , auxiliary variable

e Density

e Free stream density

Parabolic coordinates, eq. (6)

(P Stream function, eq. (2)

p) Functions defined in eq. (11)

V2a  Laplacian operator

Asymptotic equality



1.0 INTRODUCTION

Blasius solved the incompressible 'ondary layer problem for laminar

flow past a semi-infinite flat plate at zero angle of attack (references

1 and 2) and his result describes the rI ow quite well for regions where

the local Reynolds number, (A0/V , is large. Von Karman has

proposed (reference 3) that the Blasius solution be considered the first

term of an asymptotic representation of a solution to the full Navier-

Stokes equations; calculation of the second term should extend boundary

layer theory to lower Reynolds numbers. Due to the non-uniformities

which are inherent in boundary layer theory, any such representation

will contain terms which express these non-uniformities; in particular,

one would not expect a simple power series in the viscosity. The specific

form for the stream function expansion suggested by von Karman has a line

singularity on the y-axis (the plate is assumed to occupy the positive

x-axis with the leading edge at the origin). Alden (reference 4) improved

this situation somewhat by modifying von Karman's representation in such

a way as to rotate the line singularity to the negative x-axis. Adopting

von Karman's philosophy, he obtained a "first correctionm to the Blasius

solution. At first glance, Alden's iteration scheme seems to lead to an

asymptotic series which is formally a solution of the Navier-Stokes problem.

In the first part of this paper it will be shown that Alden's method can-

not lead to such a solution because of an unavoidable violation of the

free stream boundary conditions.

In the case of a gas at low Reynolds numbers the boundary conditions

at a solid surface must be modified to account for the slipping of the gas

at the wall (references 5 through 9). To support the conjecture that slip

introduces an additional non-uniformity into the solution, the linearized

boundary layer problem (for the flat plate) with a slip condition is

examined in detail in the second part of this paper. An explicit solution

is known °and this is compared with the divergent series solution obtained

by a perturbation in the "slip parameter".
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2.0 ANALYSIS

2.1 Alden's Method

The Navier-Stokes equations of motion and continuity, specialized

for the steady state two dimensional flow of an incompressible fluid are

U= - .--

;7xx
(1)

VA +tr~ +

where c and are cartesian coordinates, tA and a- are the cartesian

velocity components, 7a is the Laplacian operator, and e , p and

V are, respectively, the density, the pressure and the kinematic

viscosity.

A stream function, / , may be introduced so that
II

=A (2)

and the continuity equation is automatically satisfied. If the momentum

equations are cross differentiated and subtracted, to eliminate the pressure

terms, one obtains, in terms of the stream function

al 0)V (3)

Physical arguments lead one to suspect that the boundary layer

equation (reference 10)

* - AW " p = V(4)

may describe the flow quite well in regions wher the local Reynolds

number, U. / , is large, ( u, being the free stream velocit).
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To complete this stream function formulation of the incompressible boundary

layer problem for laminar flow past a semi-infinite flat plate at zero

angle of attack, it will be assumed that the plate occupies the positive

x-axis with the leading edge at the origin and it will be required that

}--., -- (5)

where Y- and 9 are polar coordinates with origin at the leading edge of

the plate. This is essentially the problem solved by Blasius.

In terms of parabolic coordinates,

+ Y '-e (6)

equation (3) becomes

i~
(Cr ~ ~ +,,y 1- - 2

'{~~ ~ 21 (V

w~~+
where V L
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Figure 1.

Applying the analogous boundary layer arguments to equation (7) one

obtains the "parabolic boundary layer equation",

V- -'b (8)

Note that the parabolic boundary layer equation is not the same as the

cartesian boundary layer equation expressed in parabolic coordinates

(see reference 11).

H. L. Alden (reference 4), following a suggestion by von Kaerman

(reference 3), attempted to improve the boundary layer solution by

developing the iteration scheme which solves equation (1) with the

Blasius solution as the first term in an expansion. Using his scheme,

Alden found two terms in a proposed expansion. The first term is the

solution of the perabolic boundary layer problem and the second term

may be thought of as a correction term. Since there is no obvious
mathematical reason for concluding that his scheme will not lead to an

asymptotic expansion which is formally a solution of the problem, it

is worth while to investigate turther. Alden introduces the auxiliary

variables

_ V 
(9)



and rewrites equetion (7) ae

- +
14' +' 1-3.0 i '  -3 .

(10)

= 0

Alden proposed the iteration scheme whereby /(& ) is formally

expressed as

and this is to be substituted into equation (10) and the coefficients

of explicit powers of 0 set equal to zero. The function, V* i (T' ,

will be found to be a solution of the parabolic boundary layer problem

and this scheme may be thought of as a perturbation, in 'P , around the

parabolic boundary layer solution. If, in equation (7), V is set

equal to zero, the order of the equation is depressed. One therefore

calls this perturbation scheme singular and expects some sort of singu-

larity in the solution (references 12 and 13). Furthermore, the ex-

pansion (II) is not a true power series in v since the coefficients

q ( )) depend implicitly on 0 through

Alden's scheme produces a system of equAtions for the V1 (T)1)

and for each equatimn the variables may be separated if one sets



This yields a system of ordinary differential equations for the

Unfortunately expression (12) implies that, for m. ,

c=. 00 as a-. 0. It might be possible however, to show

that the expression (11) is an asymptotic series, uniformlin: and

7 , in some region excluding an arbitrarily small region bounded by

a parabola enclosing the stagnation line ( - 0 ) and the leading edge.

This introduces the further complication of whether the boundary conditions

which remain, are sufficient for the problem. The region mentioned above

excludes the origin, which is the most likely point where a non-uniformity

will occur in the solution.

The iteration scheme yields the following equations for the (V

(fiff0I . (13)

and for Y1 =2, 3, 4,.•

where is dependent on

.and

and the primes indicate differentiation with respect to .

( FA ) F3 { , and F# () are exhibited in Appendix I).

The boundary conditions (5) require the following behavior for the

, introduced in equations (11) and (12),

S((o) 0

, . iI) .2 3) .

(.6)
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) 2,3- (16)

From equation (13)

4'+ a, , C,, a constant. (17)

Alden states that because of conditions (16)

-. k - 9. ,(D,"()- - o--W .-

This can be proved by making the highly reasonable assumption that the

velocity gradients are continuous. Because of this hypothesis, f, (i)
and its first two derivatives are continuous on 0 4 ' 4- • Now,

rewrite equation (17) as follows.

T) 4 N)+ C, x (18)

Using conditions (16), it is easy to show that

"*" " (19)deP. ,t) . , =

Thus, the equation for becomes

1 f,5, = 0 (20)

This equation with the conditions in equations (16) possesses a

solution (reference 14), often referred to as the Blasius function,

which is, together with all of its derivatives, continuous. Furthermore,

this is the only solution with continuous derivatives (reference 14).

The Blasius function exhibits the following asymptotic behavior as

-. eo (reference 15).
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.2 (21)
flow ,-- z

0 1'

Using equations (6), (9) and (12), one may formally rewrite expression (11):

If conditions (16) are satisfied and each j, () is continuous on

o f y , then u. (J)/Z is bounded on 0 e F<0 and

expression (22) is an asymptotic expansion.

Unfortunately, Alden 's scheme does not lead to a solution of the

Navier-Stokes problem since 4 (Y) cannot be made to satisfy conditions

(16). In particular, it is impossible to choose f. (Y) so that

f 0 This will be shown in the following pages.

Let C . (0 (23)

c. f '7"o)

One may rewrite equation (14) as

S( " + (32) (24)

Integrating again, 
0

+' f ' + FA(5

Let

for 4t= 2, 3, 4, ...
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Multiply equation (25) by a () end obtain

I~~ hh IA/i-4.') (27)

One can show that

(28)

and that ol, may be chosen sothat, for o,

*+ 0

.hf ,, ( ) nd c7 () e sc f to h

0o )

Th a, (j\) and .()are asymptotically finite, i.e., for each

nthere is an integer such that P 0a
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0I

. (31)

F(-'C 3, F ~ %oi + o, orsct
.-- ) ,, + o ,, .,, -

that

f.jK) '-- e (32)

0

and

.r4".) 6( 6 K (33)

Expression (32) is identical with Alden's result and is introduced here

to show that e% 0 0 . In fact Alden computed K =1.660 by numerical

integration. Thus, 4( ) cennot be made to satisfy condition (16)

and consequently the proposed expressions (11) and (12) cannot be made,

even formally, to satisfy equations (10) and (5). It may be remarked

that the Alden approach with a slip boundary condition is subject to the

same difficulty.

2.2 The Flat Plate Boundary Layer Problem With Slip

In an attempt to incorporate rarefaction effects into boundary layer

theory, one is led (reference 9)to consider a slip boundary condition,

- , where will be called the slip parameter. S is
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proportional to the mean free path length.

The flat plate boundary layer problem with slip (i.e., with a slip

boundary condition) has not yet been solved. With the idea of gaining

some knowledge of the slip effect in general, the corresponding linearized

problem for incompressible flow, which has been solved explicitly (refer-

ence 7), will now be examined. First, the problem will be formulated and

the solution displayed, Secondly, a series solution of restricted validity

will be obtained by a perturbation scheme in o Lastly, these solutions

will be compared and analyzed.

The linearized, incompressible, steady-state boundary layer problem

with slip, for the semi-infinite flat plate at zero angle of attack may

be stated

-Lk Ot 0 X > (36)

This is reminiscent of the Rayleigh impulsive plate problem, and if

condition (35) is replaced by

A -M o k 0 t X =0 ) *>0 (37)

k bounded in the entire plane

one may solve this new problem with the aid of Laplace transforms (refer-

ence 7). Fortunately, the solution to this second problem satisfies con-

ditions (35) so the solution to the original problem is at hand. This

solution is:

j* LC(,1 + j (8

L )



12

QOA j + 5j )J (40)

If one defines a local skin friction coefficient,

C~ = Z)V 1 (42)

one obtains, for this problem,

2 V..exf v..(43)

The drag coefficient for that portion of the plete extending from the

origin to a distance L downstream will be defined (including both upper

and lower plate surfaces) as

C (44)

and for this problem

/ .~ f ~..~ 1 rq ' (45)

Equations (38), (43), (45) constitute the solution of the originally

posed problem.

An attempt to solve this same problem by a formal iteration in -S

commences with the formal series

(A + ~'1 ,I) (46)
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This yields the iteration scheme

e0 0,,u 1/, . (4,7)

and for n .1,2. 3. ,

(48)

. 0 AS .-- . x x>C0

u6, - 0 > 0

The technique employed in solving the problem delineated by equntion (34),

under the conditions (35) and (36) may be employed here to solve equations

(47). The no-slip solution, U. I, j)is

woo (49)I~

It is easy to see that

, )for =1,2,3, .(50)

solves equations (48). Thus, formally,
.0!

,I 'S)' : 1%- (1. (51)

From the definition (/42) and equation (51) one obtains, formally

[_2 I (
J.~

2 o to1
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7 +

Integration by parts and the use of induction on expression (43) yields

Thus, one sees that the formal iteration scheme led to an asymptotic

(around T = O ) expansion for C (which is uniform in x for x bounded

away from zero). Expression (52) is useless at x = 0 and cannot help

in the determination of 4; it can, however, in a series of unjustified
steps, be summed exponentially, to yield expression (43) (see Appendix III).

From expression (43) , one learns that

S= .for fixed >O

for fixed X >

and the non-uniformity of C in T and )K at =x = 0 is apparent.

From expression (53),

2 /

£L6- (55)
r- -( X

Integration by parts and the use of induction on expression (45) yields

(56)

+ *

From equations (55) and (56) it is evident that a slip correction

to the local skin friction of order does not imply that the slip

correction to the drag is also of order ' a, since the non-uniformity

is sufficiently strong so that the actual correction is of order °
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3.0 CONCLUSIONS

1. The scheme, which Alden used to correct the Blasius solution, cannot

lead to a solution, even formally, of the incompressible Navier-

Stokes semi-infinite flat plate problem.

2. For the incompressible linearized flat plate problem the inclusion

of a slip boundary condition introduces a correction to the local

skin friction of order 'S' but, due to a non-uniformity in the

solution, corrects the drag coefficient to order _S
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APPENDIX I

i,, I~l#t# -

oi its m j

f,4,

+ - W(j 2 -f( -V/2 i

3 
'I 

+

4-'f + 3ff ~ .LAf2

Y -4'0~ 443={"-3

I4
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APPENDIX II

From Appendix I and equation (21) F 0 o Introducing the integration

constants. K1 . , one obtains

Fs;) Ca +~ Kai

F. %- (C2, 4 Ka,) -t/2) -A + Kj

F" F2 3

___ -1 C + K +(a,' ' : ___ __

K 23 + + '"

Because of conditions (16), one must put

, K , (11-2)

Using equations (14), (24), (25) and (28), one obtains

*C21 + K2 K1  - 3/r ( I - 12 aY'F
3 - -/3/ + 3/ ) '

3 - -- (3/-3)

fa,2 qT P)- I(- Ic2 ' + oLE'

f2" K21[,, +-, + "
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Appendix I and equations (21) and (11-3) yield

Proceeding in the same way as with F ,

F1 /0 (C72 + Ka )(CS - 3A)- -+ C-31+K3

- f3 K21 ((Y2-) o

i02 .

4 CS -12) 2(11-5)

+ (c3, + K31)(/ - 12/:y +

, ],o
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K22 -(3/ (C3 +"II OS
161

* 2 + K~~3 (~/21) e4 0(5~/~I (

' = - +,( (2-]

+ ___1_+ + (16

Because of conditims (16),

C, = -
(2)

C3 K-3

2 - , (0-,1) o" + A /S'2o) 0(3)

t3 X 3 (I -A/T2 O S-3 /32) 0 '*)(11-8)"-2 K., 1,1-13/2V" + 0('-F + A' 4/2,)o0(1"1)
6p = t -,)"..o,'-' + ( -Isla) o/ -,



20

/'/.a) A)O

.Y-4 K.2 4 ()] /) .-/.1,

NOT 0,- _11) + ( I

f4 =

-$ ov'

14/2
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APPENDIX III

Proceeding from equation (52) in a purely formal manner:

= 2 r ZI(-2 )(j r1t

uoo

h .-- [ -I + -I o

The expression

t~t (111-2)

with

S( -3)

satisfies

oI_ 2XI (2 0 

("'4)

Therefore
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and finally,

f U./ -

This method of Oexponentially summing' a divergent series is discussed

by Borel in reference 16.
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